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ABSTRACT

We present a new method to generate extractive multi-document summaries. The method uses
Integer Linear Programming to jointly maximize the importance of the sentences it includes in
the summary and their diversity, without exceeding a maximum allowed summary length. To
obtain an importance score for each sentence, it uses a Support Vector Regression model trained
on human-authored summaries, whereas the diversity of the selected sentences is measured as
the number of distinct word bigrams in the resulting summary. Experimental results on widely
used benchmarks show that our method achieves state of the art results, when compared to
competitive extractive summarizers, while being computationally efficient as well.
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1 Introduction

A multi-document summarization system aims to generate a single summary from an input set
of documents. The input documents may have been obtained, for example, by submitting a
query to an information retrieval engine and retaining the most highly ranked documents, or by
clustering the documents of a large collection and then using each cluster as a set of documents
to be summarized. Although evaluations with human judges also examine, among other factors,
the coherence, referential clarity, grammaticality, and readability of the summaries (Dang, 2005,
2006} Dang and Owczarzak, |2008), and some of these factors have also been considered in
recent summarization algorithms (Nishikawa et al., [2010b; [Woodsend and Lapatal, [2012), most
current multi-document summarization systems consider only the importance of the summary’s
sentences, their non-redundancy (also called diversity), and the summary length (McDonald,
2007; [Berg-Kirkpatrick et al., 2011}; [Lin and Bilmes| [2011).

An extractive multi-document summarizer forms summaries by extracting (selecting) sentences
from the input documents, without modifying the selected sentences. By contrast, an abstractive
summarizer may also shorten or, more generally, rephrase the selected sentences. In practice,
the additional processing of the selected sentences may only marginally improve or even reduce
the perceived quality of the resulting summaries (Gillick and Favre, [2009), though recent
work has produced abstractive summarization methods that perform better than extractive
ones (Berg-Kirkpatrick et al.,[2011; [Woodsend and Lapata, 2012). Nevertheless, the difference
in the performance of extractive and abstractive summarizers is often small, and abstractive
summarizers require more processing time and typically require tools and resources (e.g.,
reliable large coverage parsers, paraphrasing rules) that are often not available in less widely
spoken languages. Hence, it is still worth trying to improve extractive summarizers, at least
from a practical, application-oriented point of view.

Many multi-document summarizers, especially extractive ones, adopt a greedy search when
constructing summaries. For example, they may rank the sentences of the input documents
by importance, and then iteratively add to the summary (and remove from the ranked list of
input sentences) the sentence with the highest importance score, until the maximum allowed
summary length has been reached, possibly discarding sentences of the ranked list that are too
similar to sentences already included in the summary. Recent work has shown that adopting
more principled optimization methods based on Integer Linear Programming (ILP), instead of
greedy search, can lead to summaries that are better or at least comparable to those of state of
the art summarizers (McDonald), 2007} |Gillick and Favrel [2009}; Nishikawa et al.| [2010a).

In this paper, we introduce a new extractive multi-document summarization method that uses
ILP to jointly optimize the importance of the summary’s sentences and their diversity (non-
redundancy), also respecting the maximum allowed summary length. Our method is more
efficient than the seminal 1.p-based summarizer of McDonald (2007), because of its simpler
1L model. The main competitor of our method, if we exclude abstractive summarizers, is the
extractive version of Berg-Kirkpatrick et al.’s (2011)) summarizer, which has the best previously
reported results in extractive multi-document summarization. Inspired by Berg-Kirkpatrick
et al.’s work, we include in the objective function of our 1iLr model the number of distinct
word bigrams (of the input documents) that occur in the summary, but we use that number
to measure diversity, unlike Berg-Kirkpatrick et al.’s work, where bigrams are weighted to
measure importance. To obtain an importance score for each sentence, we use a Support Vector
Regression (svR) model (Vapnik, |1998), which has no direct counter-part in Berg-Kirkpatrick



et al.’s method. We show that our 1iLP method achieves state of the art ROUGE scores (Lin,
2004) on widely used benchmark datasets, when compared to Berg-Kirkpatrick’s and other
competitive extractive summarizers, also outperforming two greedy baselines that use only
the importance scores of the svr. For completeness, we also discuss and compare against the
abstractive version of Berg-Kirkpatrick et al.’s summarizer, and the state of the art abstractive
summarizer of Woodsend and Lapata (2012); we show that our method achieves better ROUGE
scores than Woodsend and Lapata’s summarizer, when the rephrasing grammar of the latter
method is not used.

Section [2|below discusses previous work on 1Lp methods for summarization. Section 3| presents
our own 1LP model, after first introducing the svkR model of sentence importance and the greedy
baselines. Section [4] presents the experiments that we conducted and discusses their results.
Section [5] concludes and proposes directions for further research.

2 Related work

The first 1P method for summarization was proposed by McDonald (2007). It constructs
summaries by maximizing the importance of the selected sentences and minimizing their
pairwise similarity, as shown below. No sentence ordering is performed.
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Here, n is the number of sentences in the input documents; imp(s;) is the importance score
of sentence s;; [; is the length of s;; sim(s;,s;) is the similarity of sentences s; and s;; and L4
is the maximum allowed length. The x; variables, jointly denoted x, are binary and indicate
whether or not the corresponding sentences s; are included (selected) in the summary. The
Yi,; variables, jointly denoted y, are also binary and indicate whether or not both s; and s; are
included in the summary. Constraint[2|ensures that the maximum total length is not exceeded.
Constraints ensure that the values of x;, x;, and y; ; are consistent (e.g., if y; ; = 1, then
x; =x;=1;and if y; ; =0, then x; = 0 or x; =0).

McDonald showed experimentally that the 1.p model above achieves better ROUGE scores (Lin,
2004) than a method that attempts to maximize the same objective (1)) using a greedy algorithm.
However, McDonald also showed that the 1.p model above corresponds to an Np-hard problem
and is, therefore, intractable for a large number of sentences. A set of experiments by McDonald
confirmed that the model does not scale up well in practice, mostly because of the O(n?) Yij
variables that are used to model the redundancy between sentences. Furthermore, the ROUGE
scores of McDonald’s 1.p model were not always better than those obtained using a modified
version of the Knapsack dynamic programming algorithm (Cormen et al.,[2001).



In a more recent approach, Berg-Kirkpatrick et al. (2011) presented an 1iLp method based
on the notion of ‘concepts’, a notion initially introduced by Gillick and Favre (2009). The
so called ‘concepts’ are actually word bigrams, all the word bigrams of the documents to be
summarized. Each bigram has a weight w; that indicates its importance. The 1Lp objective (6]
of Berg-Kirkpatrick et al. prefers summaries with many important concepts, i.e., summaries
whose bigrams have a large sum of weights w;; below b; are binary variables indicating which
bigrams (|B| in total) are present in the summary. An additional constraint, not shown here,
ensures that the maximum allowed summary length is not exceeded.
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Berg-Kirkpatrick et al.’s model also takes into account the possible subtree cuts (deletions)
of the parse trees of the sentences of the input documents. The cuts give rise to different
compressions (shortenings) of the sentences; hence, Berg-Kirkpatrick et al.’s summarizer is
an abstractive one. In the objective (), u; are the weights of the possible subtree cuts of all
the sentences of the input documents, and ¢; are binary variables indicating which cuts (|C| in
total) are used. Additional contraints, not shown above, ensure that the values of b; and c; are
consistent. Overall, Berg-Kirkpatrick et al.’s method aims to produce summaries that contain
many important bigrams, while also performing many desirable subtree cuts.

The weights w; and u; are themselves estimated as weighted sums of features, i.e., w; = W' -®,,
where ; is a feature vector describing the bigram corresponding to the binary variable b;, and
W is a vector of feature weights; similarly, u; = UT - ¥;, where ¥, is a feature vector describing
the subtree cut that corresponds to the binary variable c;, and U is a vector of feature weightsE]
The feature vector ®; includes, for example, the frequency of the corresponding bigram in the
documents to be summarized, and the minimum sentence position (e.g., 3rd sentence in a
document) of the sentences that contain that bigram in the input documents. The features of
W; show, for example, if a relative clause or a temporal phrase was cut.

To learn W and U, Berg-Kirkpatrick et al. use a structured Support Vector Machine (svm)
(Vapnik, |1998; Tsochantaridis et al.,[2004) that assigns to each summary the score h(b, c) of the
objective function (6). During training, the svm attempts to separate (prefer) the gold summary
of each training set of input documents from all the other possible summaries (of the same
input documents) by a variable margin, determined by a loss function. Berg-Kirkpatrick et al.
use a bigram recall loss function similar to RouGe-2 (Lin, 2004). The loss function causes more
emphasis to be placed on separating well the gold summaries from other summaries that share
many bigrams with the gold ones. The learnt W and U are then used in the objective (6).

Berg-Kirkpatrick et al. report that their full method achieves higher ROUGE scores than an
extractive version of their method (without the subtree cuts, i.e., without sentence compression)
with no significant decrease in grammaticality (when sentence compression is used), unlike
other work (Gillick and Favre, 2009), where sentence compression was found to reduce
grammaticality. The extractive version of Berg-Kirkpatrick et al.’s method omits the second
term of Formula @, as in the previous work of Gillick and Favre (2009). As already noted, the
extractive version of Berg-Kirkpatrick et al.’s method has the best previously published results
in extractive multi-document summarization.

1Berg-Kirkpatrick et al.|2011|use different, but equivalent terminology. A minor difference from their description of
their method is that they seem to set W = U, but in a more general formulation this does not seem to be necessary.



More recently, Woodsend and Lapata (2012) proposed an iLp-based method that forms a
summary by maximizing the objective function shown below. The objective function combines
the importance fz(z) of the bigrams in the summary’s sentences, the salience fs(z) of the parse
tree nodes of the summary’s sentences, and a unigram language model f; z(z), which penalizes
sentences containing words that are unlikely to appear in summaries; we do not discuss f;z(z)
further to save space.

max, fz(z) + fs(2) + f1r(2) @

The argument z collectively denotes binary variables z;, one z; for each node of the parse tree
of each sentence of the input documents. Each z; shows whether or not the corresponding node
has been retained or deleted. By deleting nodes, the method can compress sentences, like the
method of Berg-Kirkpatrick et al.; hence, this is also an abstractive summarization method.
The f3(2) component is the same as in Berg-Kirkpatrick et al.’s work (fz(2z) = ZEI w; - by).
Additional constraints ensure that a bigram can be selected only if at least a parse tree node

that subsumes it has been selected, that the maximum summary length is not exceeded etc.

To compute f5(z), Woodsend and Lapata train a linear svm, with separating hyperplane W7 -, =
0, to predict whether or not each sentence s; of an input set of documents would be selected by
a human creating a summary. The fs(z) score, defined below, is the sum of the svM’s predictions,
for all the phrases that correspond to the retained parse tree nodes; ®; is a feature vector
describing each sentence s; (or phrase), with features indicating, for example, if the sentence
(or phrase) was the first one in an input document, if it contains pronouns etc.; W are the
feature weights learnt by the svm.

fs@) =Y W8z ®)
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A second svM is trained to exclude sentences that are too long, contain quotations etc. The
predictions of the second svm are used to add hard constraints to the 1.p model, rather than
including the predictions in the 1Lp objective function (7).

The method of Woodsend and Lapata optionally employs a quasi-synchronous tree grammar
(@sTG), in order to generate candidate compressions and paraphrases of the source sentences.
The QsTG grammar is learnt from aligned summary and source sentences. When the QsTG
grammar is used, the rest of the method does not operate only on the sentences of the input
documents, but also on rephrasings of these sentences, produced by the grammar. Hence, in
its full form, the method of Woodsend and Lapata is abstractive not only because it can delete
tree nodes of the parse trees, but also because it can rephrase sentences using the grammar. It
can be turned into an extractive summarization method by disabling the QsTG grammar and
disallowing tree node deletions. Woodsend and Lapata, however, provide experimental results
of their method without the QsTG grammar, but not without tree node deletions; hence, we
could not compare directly to a purely extractive version of Woodsend and Lapata’a summarizer.

Related to our work is also the approach of Lin and Bilmes (2011)), where the best summary of a
set of documents is selected by maximizing a monotone submodular function. The maximization
of such functions is an np-hard problem; however, there is a greedy algorithm that approximates
the optimum by a constant factor. Lin and Bilmes show that several previous summarization
approaches can be described in terms of submodular functions. They also propose their own
submodular functions for summarization, which combine importance and diversity.



3 Our method

In this section, we first discuss our svk model that assigns importance scores to the sentences of
the input documents, and two greedy baseline summarizers that use the svr without 1.p. We
then introduce our 1.p method, which jointly maximizes the importance and diversity of the
selected sentences, while respecting the maximum allowed summary length.

3.1 The SVR model of sentence importance

A Support Vector Regression (svkR) model aims to learn a function f : R" — R, which will
be used to predict the value of a variable y € R given a feature vector X € R". In particular,
given [ training instances (X;, 1), ..., (X;, ¥;), an svkR model is learnt by solving the following
optimization problem (Vapnik, |1998); W is a vector of feature weights; ¢ is a function that maps
feature vectors to a new vector space of higher dimensionality to allow non-linear functions to
be learnt in the original space; C > 0 and € > 0 are given.

min —||W||2+CZ;+CZ£ ©
subject to (fori=1,...,D):
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The goal is to learn a linear (in the new space) function, whose prediction (value) W7-¢ (X;)+w,
for each training instance X; will not to be farther than e from the target (correct) value y;. Since
this is not always feasible, two slack variables &; and & are used to measure the prediction’s
error above or below the target y;. The objective (9) jointly minimizes the total prediction error
and ||W||, to avoid overﬁttingE]

In our case, X; is the feature vector of a sentence and y; is the sentence’s importance score.
During training, the target score y; of each sentence s, i.e., the score that the svr should ideally
return, is taken to be the average of the RouGE-2 and ROUGE-sU4 scores (Lin, [2004) of s, when s
is compared against the corresponding gold (human-written) summaries; the latter are included
in the training datasets that we used. We use the average of ROUGE-2 and ROUGE-sU4, because
they are the two most commonly used measures to automatically evaluate machine-generated
summaries against gold ones. Roughly speaking, both measures compute the bigram recall
of the summary (or individual sentence) being evaluated against multiple gold summaries
(provided by different human authors), but Rouge-su4 also considers skip bigrams with a
maximum distance of 4 words between the words of each skip bigram. Both measures have
been found to correlate well with human judgements in extractive summarization (Linl 2004).
Hence, training a component (in our case, an svR) to predict the ROUGE score (in our case, the
average of ROUGE-2 and ROUGE-sU4) of each sentence can be particularly useful. Intuitively,
a sentence with a high RouGE score has a high overlap with the gold summaries; and since

2We use the svr implementation of Lisvm (http://www.csie.ntu.edu.tw/"cjlin/libsvm/) with an RBF
(non-linear) kernel and LiBsvM’s parameter tuning facilities.
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the gold summaries contain the sentences that human authors considered most important, a
sentence with a high ROUGE score is most likely also important. This is why we view our SvR,
which attempts to predict the ROUGE score (average ROUGE-2 and ROUGE-SU4) of each sentence,
as a component that assigns an importance score to each sentence.

The idea to use ROUGE during training is also present in the work of Berg-Kirkpatrick et al.
(Section[2)). The svm that Berg-Kirkpatrick et al. use, however, in effect attempts to separate
(prefer) the gold summaries from the other possible summaries; ROUGE (more precisely, a
modified version of RouGE-2) is included in the svm as a loss function to force the svm to place
more emphasis on separating gold summaries from other possible summaries with high rouGe
scores. By contrast, the svr that we use attempts to directly output the ROUGE score of each
sentence. Furthermore, the RBF kernel that we use in the svr allows the svr to learn non-linear
functions, whereas the linear svm of Berg-Kirkpatrick et al. can learn only linear functions. We
also note that the two svmMs used by Woodsend and Lapata (Section [2) in effect perform binary
classification (not regression), attempting to separate sentences that a human would include in
a summary from sentences that would not be included. The (unsigned) distance from the learnt
separating hyperplane of the first svm is included in the objective function of the iL.P model, in
effect treating the distance as a confidence score. We believe that our use of a regression model
(svr) is a better choice, because the distance from an svMm’s separating hyperplane is often a
poor confidence estimate (that an instance belongs in the positive or negative category). We
also note that the second svm of Woodsend and Lapata contributes only hard constraints to the
iLp model, without taking into account the svM’s confidence.

We include the following features in the feature vector X of each sentence s:

e Sentence position SP(s):
pos(s,d(s))
ld(s)I
where pos(s,d(s)) is the position (sentence order) of sentence s in its document d(s), and
|d(s)| is the number of sentences in d(s).

SP(s) =

e Named entities NE(s):

nl)
NE(s) = len(s)

where n(s) is the number of named entities in s, and len(s) is the number of words in sE]

e Levenshtein distance LD(s,q): The Levenshtein Distance (Levenshtein, |1966]) between
the user’s query g and sentence s; insertions, deletions, and replacements affect entire
words. In the datasets we experimented with, the documents to be summarized were
relevant to a query q, which was always available.

o Word overlap WO(s, q): The number of words shared by the query q and sentence s, after
removing stop words and duplicate words from both g and s.

e Content word frequency CF(s) and document frequency DF(s): We use these measures as
defined by Schilder and Ravikumar (2008). CF(s) is defined as follows:

Zlcs:1 pc(wi)

S

CF(s) =

3We use Stanford University’s named entity recognizer (consulthttp://nlp.stanford.edu/).
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where ¢, is the number of content words in sentence s, p.(w) = ﬁ, m is the number of
occurrences of content word w in the input documents, and M is the total number of
content word occurences in the input documents. Similarly, DF(s) is defined as:

Zf;l Pa (Wz)

Cs

DF(s) =

where py(w) = %, d is the number of input documents the content word w occurs in, and
D is the number of all input documents.

Experiments on the development set (see below) confirmed that all the features have a positive
impact, i.e., the results on the development set are worse, if any of the features are removed.

3.2 The baseline summarizers

We compare against two greedy baselines that use the svk model of sentence importance, but
not 1Lp. The first one, called GREEDY, uses the trained svk model of the previous section to assign
importance scores to all the sentences of the documents to be summarized. It then ranks the
sentences by decreasing importance score and constructs the summary by iteratively selecting
(and removing from the ranked list of sentences) the sentence with the highest importance
score that fits in the summary space left.

The second baseline, called GREEDY-RED, operates in the same way, but it also takes into account
redundancy. When a new sentence (with the highest importance score among the remaining
sentences in the ranked list) is about to be added to the summary, its cosine similarity (computed
on words) to all the sentences that have already been included in the summary is computed. If
the similarity between the new and any of the already selected sentences exceeds a threshold
t, the new sentence is discarded and a new iteration starts, where the next sentence of the
ranked list of remaining sentences is considered. In our experiments, t was determined by
tuning GREEDY-RED on development data (see below).

3.3 Our ILP summarization model

Instead of directly using in our 1L.P model the importance score fqz(s;) of each sentence s;, as
returned by the svk model of Section 3.1} we normalize it using the maximum and mimimum
values that the svR model returns for the j = 1,...,n sentences of the input documents:

fosvr(s;) — min; foyr(s;)

max; fSVR(Sj) - minj fSVR(Sj)

(14)

a;

The objective of our summarization 1Lp model sums the normalized relevance scores a; of
the selected sentences to estimate the overall importance imp(S) of the resulting summary S. It
also estimates the diversity div(S) of S by calculating how many word bigrams of the documents
being summarized are present in the selected sentences; when more bigrams are present in the
summary, the summary’s sentences share fewer bigrams, i.e., they are less redundant. Notice
that we do not assign importance scores to the bigrams, unlike the work of Berg-Kirkpatrick
et al. and Woodsend and Lapata (Section . The binary variables x; and b; indicate which
sentences s; and which word bigrams g;, respectively, are present in the summary; see Figure



for an example of the relations between the x; and b; variables.
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Again, [; is the length of sentence s;, L, is the maximum allowed summary length, and n
is the number of input sentences. Both imp(S) and div(S) are normalized to [0, 1] using the
maximum number of sentences k., that can be included in the summary and the total number
of (distinct) bigrams |B| of the n input sentences, respectively. To estimate k,,,,, we divide the
maximum available space L,,,, by the length of the shortest input sentence. The values of 1
and A, are tuned on development data. We set A; + A, = 1. Constraint[16] guarantees that
L,qx is not exceeded. The other two constraints are explained below:

e Constraint[17} B; is the set of bigrams that appear in sentence s;, |B;| is the cardinality of
B;, g; ranges over the bigrams (concepts) in B;, and b; is the binary variable that shows if
bigram g; has been selected. If a sentence s; is selected (x; = 1), then all of its bigrams

must also be selected, i.e., D 4B, b; = |B;| and Constraint|17|holds. If sentence s; is not

selected (x; = 0), then some of its bigrams may still be selected, if they occur in another
selected sentence; hence Y| 4B, b; > 0 and Constraintholds again.

e Constraint Again, b; is the binary variable that shows if g; has been selected. S;
is the set of sentences that bigram g; appears in; and x; is the binary variable that
shows if sentence s; has been selected. If a bigram g; is selected (b; = 1), then at least
one sentence that contains that bigram must also be selected; hence, Zsl es; Xi >1and
Constraintholds. If bigram gj is not selected (b = 0), then none of the sentences that
contain it may be selected; hence, Zsi s, Xi = 0 and Constraintholds again.

In preliminary experiments, we noticed that our 1.p model above, called 1.r1, tended to select
many short sentences, which had a poor RoUGE match with the reference summaries. To address
this issue, we developed an alternative 1. model, called 1.r2, whose objective function (3.3
rewards longer sentences by multiplying their importance scores a; with their lengths [; (in
words). The constraints of 1LP2 remain as in 1Lp1 (Constraints 118).

n |B|

l; b;
ni’lil(xlyzai-l‘ ax'xi‘{‘kz';; (19)

i=1 m




X1 X3 X3
b, b, b, b,

Figure 1: There are 3 sentences (corresponding to the binary variables x;, x,, x3) containing 4
word bigrams (corresponding to the binary variables b,, b,, bs, b,). For example, sentence s,
contains the first, second, and fourth bigrams; and if sentences s; and s, are selected (x; =1
and x, = 1), then the bigrams they contain must also be selected (b; =1, b, =1, b, =1).

4 Experiments

We now present the experiments that we performed, starting from the datasets we used.

4.1 Datasets and experimental setup

We used the datasets of buc 2005, puc 2006, puc 2007, and Tac 2008 (Dang, 2005} 2006; Dang
and Owczarzak, [2008) | Each of these datasets contains a number of document clusters. Each
cluster contains documents relevant to a query (a question or a longer topic description), which
is also given. For each cluster, a summary not exceeding a maximum allowed length has to be
produced, so that the summary will provide an answer to the corresponding query. Multiple
reference (gold, human-authored) summaries are also provided per cluster. Table [I] provides
more information on the datasets we used. For our experiments, we extracted all the sentences
from the documents of each cluster, discarding sentences shorter than or equal to 7 words. We
also applied a small set of cleanup rules to remove unnecessary formatting tags.

dataset documents | clusters | reference | word limit
per cluster summaries | (in words)
puc 2005 25-50 50 4-9 250
puc 2006 25 50 4 250
puc 2007 25 45 4 250
TAC 2008 10 48 4 100

Table 1: Datasets used in our experiments.

The svr model of sentence importance (Section[3.1)) was trained on the sentences of buc 2006
(i.e., puc 2006 was our training dataset) and it was used to assign importance scores to the
sentences of the clusters of puc 2005, puc 2007, and Tac 2008. For each document cluster, we
used the n = 100 sentences with the highest importance scores as input to the baseline and 1Lp
summarizers of Sections[3.2]and

We note that 1.p problems are in the worst case (for the most difficult 1. problems) np-hard.
Our 1Lp1 and 1.2 models (Section [3.3)) are generalizations of the 0-1 Knapsack problem, which
is known to be np-hard; hence, our models also constitute Np-hard problems. Nevertheless, very
efficient 1Lp solvers are available | In the worst case, the off-the-shelf solver that we use finds

“Consult also http://duc.nist.gov//and http://www.nist.gov/tac/.
SWe use the implementation of the Branch and Cut algorithm of the GNU Linear Programming Kit (GLPK); consult
http://sourceforge.net/projects/winglpk/,
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Figure 2: ROUGE-2 scores of the two versions of our iLp model on puc 2007 data, used as
development data, with the svR model of sentence importance trained on puc 2006 data.

a solution (for 1iLr1 or 1L.P2, per summary) in 1.25 seconds and 0.9 seconds in the puc 2007
and Tac 2008 datasets, respectively. The solver takes more time in buc 2007 than in Tac 2008,
because puc 2007 summaries are longer (cf. Table[1) and, therefore, the search space is larger.
This efficiency is mostly due to the fact that the b; and x; variables of 1Lp1 and 1LP2 are in the
order of hundreds and grow approximately linearly to the number and size (word bigrams) of
the input sentences, as opposed to the quadratic (to the number of sentences) growth of the
number of variables in McDonald’s model (Section[2). Berg-Kirkpatrick et al. (2011) report very
similar execution times; they report that the solver they use finds the solution of their extractive
formulation in less than a second for most summaries of Tac 2008 and Tac 2009. Our method
(1Lr1 or 1.p2) takes on average 10-11 seconds to form each summary, including the time to read
and preprocess the input documents, formulate the 1.p model etc. By contrast Woodsend and
Lapata (2012) report that their method takes 55 seconds on average for each summary, though
presumably this also includes parsing the input and applying the QSTG grammar.

4.2 Experiments on development data

To determine which of the two versions (iLP1 or 1.P2) of our iLP model performs best and to tune
their parameters, we carried out a set of experiments on the buc 2007 dataset, i.e., we used
the puc 2007 dataset as our development data; recall that the puc 2006 dataset was used as
training data in all cases. We used 11 different values of A; (A, =1 —A;) in both 1Lr1 and 1.p2,
and we evaluated the generated summaries using ROUGE-2. The results of these experiments
are presented in Figure|2] 1Lp2 is better than 1L.p1 for all values of A;, and its best ROUGE-2 score
is obtained for A; = 0.4 (A, = 0.6). The fact that the best results were obtained for non-zero A,
and A, values also shows that both the sentence importance component (svr) and the diversity
component (bigram count) contribute to the results of our 1.p models.

We also compared the average number of selected sentences per cluster of 1.p1 and 1LP2 on
puc 2007 data. As already noted and illustrated in Figure 3} 1.P1 tends to select more and,
therefore, shorter sentences than 1.p2; we have found that these shorter sentences have worse
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Figure 3: Average number of sentences selected by the two versions of our 1.p model on puc
2007 data, used as development data, with the svkR model of sentence importance trained on
puc 2006 data.

ROUGE matches with the reference summaries, which is why 1.r1 performs generally worse than
1Lp2. Figure [3|also shows that 1.2 selects approximately the same number of sentences for all
A, values; this is because 1.2 tends to always select relatively long sentences and, hence, the
number of selected sentences that fit in the available space cannot vary as much as in 1.p1.

In Table we present the ROUGE scores of the two versions of our 1.p model (for A; = 0.4) on the
puc 2007 dataset, along with the corresponding scores of the GREEDY and GREEDY-RED baselines
(Section, which use only the svr without 1Lp. We also show the scores of several state of the
art systems, both extractive and abstractive, as they were reported in the corresponding articles;
more recently published results are shown first. Our 1.P2 model has the best reported ROUGE-2
score on the buc 2007 dataset, and the second best ROUGE-sU4 score, though one should keep
in mind that the puc 2007 dataset was our development set.

4.3 Experiments on test data

We then evaluated 1.2 with A; = 0.4, which was our best system in the experiments on the
development data (puc 2007), against the systems with the highest published ROUGE scores
on TAC 2008 and puc 2005 data, our two test datasetsﬁ The results of these experiments are
listed in Tables [3]and [4] respectively. On the Tac 2008 dataset (Table [3), the most recent of
the datasets we experimented with, our 1.p2 method achieves the second best ROUGE-SU4 score
and the third best RoUGE-2 score, following the method of Woodsend and Lapata with the QsTG
grammar enabled, and the abstractive (full) method of Berg-Kirkpatrick et al., respectively (see
Section [2). Our 1.2 method performs better than the method of Woodsend and Lapata without
the QsTG grammar, even though the method of Woodsend and Lapata is still an abstractive one,
even without the QsTG grammar (it can still delete parse tree nodes), whereas our method is
purely extractive. If we exclude abstractive summarizers, our 1.2 method has the best ROUGE-2
and ROUGE-sU4 scores.

SWe used Set A of TAc 2008.



system | ROUGE-2 | ROUGE-5U4 |

ILP2 0.12517 | 0.17603
iLpl 0.12201 | 0.17283
GREEDY-RED 0.11591 | 0.16908
GREEDY 0.11408 | 0.16651
Lin and Bilmes|2011 0.12380 | N/A

Celikyilmaz and Hakkani-Tur [2010 0.11400 | 0.17200
Haghighi and Vanderwende [2009 0.11800 | 0.16700

Schilder and Ravikumar|2008 0.11000 | N/A

Pingali et al. 2007 (buc 2007) 0.12448 | 0.17711
Toutanova et al. [2007 (puc 2007) 0.12028 | 0.17074
Conroy et al.|[2007|(puc 2007) 0.11793 | 0.17593

Amini and Usunier|2007| (puc 2007) | 0.11887 | 0.16999

Table 2: Comparison of our 1.P method (two versions, 1.P1 and 1.p2) against greedy baselines
(GreEEDY and GREEDY-RED) that use the same svrR model of sentence importance without 1Lp, and
against other state of the art summarizers on puc 2007 data (our development dataset). Our
i.p method was trained on puc 2006 data.

On the puc 2005 dataset (Table , our 1.P2 method has the best reported ROUGE-2 and ROUGE-
SU4 scores. Berg-Kirkpatrick et al. and Woodsend and Lapata provide no results of their systems
for this dataset. They also provide no results for the more recent Tac 2009 dataset, because
they used it as their training set. We did not experiment with the Tac 2009 dataset, because our
main competitors have not published results for that dataset.

Finally, we use paired t-tests (p < 0.05) to assess if the difference between the scores of 1.P2
and the other systems is statistically significant. We denote the existence or absence of statistical
significance with + and —, respectively. t-tests were applicable only for the systems that we had
the ROUGE scores for each topic. These are the ones that took part in puc or TAC competitions
and their results were made available to us by the organizers.

5 Conclusions

We presented a new 1.p method (in two versions) for multi-document summarization. Our
method jointly maximizes the importance of the sentences it includes in a summary and their
diversity, without exceeding a maximum allowed summary length. To obtain an importance
score for each sentence, it uses an svk model, trained on human-authored summaries to predict
the ROUGE score of each sentence. Diversity is measured as the number of word bigrams of the
input documents that occur in the resulting summary. Experimental results on widely used
benchmarks for news summarization show that our 1.p method achieves state of the art results
among extractive summarizers. It also outperforms two greedy baselines that use the same
svrR model of sentence importance without 1P, and it performs better than some abstractive
summarizers. Our method is also very fast, and it does not require a parser or other resources
that are not always available in less widely spoken languages.

We are already experimenting with an extended version of our method that also performs
sentence compression. In future work, we hope to extend our 1LP model to consider discourse
coherence, sentence aggregation, and referring expression generation.



| system | ROUGE-2 | ROUGE-5U4 |

[ 1Lp2 | 011168 | 0.14413 |
Woodsend and Lapata 2012 (with QsTG) 0.11370 0.14470
Woodsend and Lapata [2012| (without QsTG) 0.10320 0.13680
Berg-Kirkpatrick et al.|[2011| (with subtree cuts) 0.11700 0.14380
Berg-Kirkpatrick et al. 2011 (without subtree cuts) 0.11050 0.13860
Shen and Li|2010| 0.09012 | 0.12094
Gillick and Favre |2009| (with sentence compression) 0.11100 N/A
Gillick and Favre |2009| (without sentence compression) | 0.11000 N/A
Gillick et al.|[2008| (run 43 in TAC 2008) 0.11140™ | 0.14298~
Gillick et al.|[2008| (run 13 in TAC 2008) 0.11044™ | 0.13985™
Conroy and Schlesinger|[2008| (run 60 in Tac 2008) 0.10379~ | 0.14200~
Conroy and Schlesinger 2008, (run 37 in TAc 2008) 0.10338~ | 0.14277~
Conroy and Schlesinger 2008, (run 06 in TAC 2008) 0.10133% | 0.13977
Galanis and Malakasiotis |2008| (run 02 in TAC 2008) 0.10012% | 0.13694~

Table 3: Comparison of our best 1.P summarizer (1L.p2) against state of the art summarizers on
TAC 2008 data (one of our two test datasets). Our iLp method was trained on puc 2006 data. It

has the best ROUGE-2 and ROUGE-SU4 scores among extractive summarizers.

system ROUGE-2 ROUGE-SU4
1LpP2 0.08174 | 0.13640
Lin and Bilmes 2011 0.07820 | N/A

Shen and Li|2010 0.07311 | 0.13061
McDonald 2007, (iLp) 0.06100 N/A
McDonald |2007| (Knapsack) | 0.06700 N/A

Ye et al.[2005| 0.0744% | 0.13461
Li et al. 2005 0.07313% | 0.13158~
Daume and Marcu |2005| 0.07089% | 0.12649"

Table 4: Comparison of our best iLp summarizer (1Lp2) against state of the art summarizers on
puc 2005 data (one of our two test datasets). Our 1Lp method was trained on puc 2006 data.
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